1980 ခုနှစ်များအလယ်ပိုင်းတွင် Beklemyshev၊ Allrn နှင့် အခြားသောသိပ္ပံပညာရှင်များသည် လက်တွေ့လုပ်ငန်းလိုအပ်ချက်အတွက် လေဆာနည်းပညာနှင့် သန့်ရှင်းရေးနည်းပညာကို ပေါင်းစပ်ကာ ဆက်စပ်သုတေသနပြုလုပ်ခဲ့သည်။ ထိုအချိန်မှစ၍ လေဆာသန့်စင်ခြင်း (Laser Cleanning) နည်းပညာဆိုင်ရာ အယူအဆ ပေါ်ပေါက်လာခဲ့သည်။ ညစ်ညမ်းစေသော အရာများနှင့် အလွှာများကြား ဆက်စပ်မှုအား binding force ကို covalent bond၊ double dipole၊ capillary action နှင့် van der Waals force ဟူ၍ ပိုင်းခြားထားသည်။ ဤအင်အားကို ကျော်လွှားနိုင်လျှင် သို့မဟုတ် ဖျက်ဆီးနိုင်လျှင် ညစ်ညမ်းခြင်း၏ အကျိုးသက်ရောက်မှုကို ရရှိမည်ဖြစ်သည်။
Maman သည် 1960 ခုနှစ်တွင် လေဆာသွေးခုန်နှုန်းအထွက်ကို ပထမဆုံးရရှိခဲ့ပြီးကတည်းက၊ လူသားများ၏ လေဆာသွေးခုန်နှုန်းကို အကျယ်ချုံ့ခြင်းလုပ်ငန်းစဉ်ကို Q-switching နည်းပညာအဆင့်၊ မုဒ်လော့ခ်ချခြင်းနည်းပညာအဆင့်နှင့် chirped pulse amplification နည်းပညာအဆင့်ဟူ၍ အဆင့်သုံးဆင့်ဖြင့် အကြမ်းဖျင်းခွဲခြားနိုင်သည်။ Chirped pulse amplification (CPA) သည် femtosecond လေဆာချဲ့နေစဉ်အတွင်း solid-state လေဆာပစ္စည်းများမှထုတ်ပေးသော self-focusing effect ကိုကျော်လွှားရန်တီထွင်ထားသောနည်းပညာအသစ်တစ်ခုဖြစ်သည်။ ၎င်းသည် မုဒ်လော့ခ်ချထားသော လေဆာများဖြင့် ထုတ်ပေးသည့် အလွန်တိုတောင်းသော ပဲမျိုးစုံကို ပထမဆုံး ထောက်ပံ့ပေးသည်။ "အပြုသဘောဆောင်သောတေးသံ"၊ ချဲ့ထွင်ရန်အတွက် သွေးခုန်နှုန်းအကျယ်ကို picoseconds သို့မဟုတ် nanoseconds များအထိချဲ့ပြီး လုံလောက်သောစွမ်းအင်ချဲ့ထွင်မှုရရှိပြီးနောက် လုံလောက်သောစွမ်းအင်ချဲ့ထွင်မှုကိုရရှိပြီးနောက် chirp လျော်ကြေးငွေ (အနုတ်လက္ခဏာ chirp) နည်းလမ်းကိုအသုံးပြုပါ။ femtosecond လေဆာများ ဖွံ့ဖြိုးတိုးတက်မှုသည် အလွန်အရေးကြီးပါသည်။
ဆီမီးကွန်ဒတ်တာလေဆာသည် သေးငယ်သောအရွယ်အစား၊ ပေါ့ပါးသောအလေးချိန်၊ မြင့်မားသောလျှပ်စစ်-အလင်းပြန်ခြင်းစွမ်းဆောင်ရည်၊ ယုံကြည်စိတ်ချရပြီး တာရှည်ခံနိုင်မှု၏ အားသာချက်များရှိသည်။ ၎င်းတွင် စက်မှုလုပ်ငန်းများ၊ ဇီဝဆေးဝါးနှင့် နိုင်ငံတော် ကာကွယ်ရေး နယ်ပယ်များတွင် အရေးကြီးသော အသုံးချမှုများ ပါဝင်သည်။
သိပ္ပံပညာရှင်များသည် မျက်စိပညာနှင့် နှလုံးခွဲစိတ်မှု သို့မဟုတ် ကောင်းမွန်သောပစ္စည်းများ အင်ဂျင်နီယာဆိုင်ရာများတွင် အလားအလာရှိသော အသုံးချမှုများပါရှိသော အချိန်တိုအတွင်း စွမ်းအင်များစွာထုတ်ပေးနိုင်သည့် လေဆာအမျိုးအစားသစ်ကို တီထွင်ခဲ့သည်။ University of Sydney မှ Photonics and Optical Sciences မှ ဒါရိုက်တာ ပါမောက္ခ Martin De Steck က ပြောကြားရာတွင် - ဤလေဆာ၏ လက္ခဏာမှာ သွေးခုန်နှုန်း တစ်စက္ကန့်၏ တစ်ထရီလျံအောက်သို့ လျှော့ချလိုက်သောအခါတွင် စွမ်းအင်လည်း ဖြစ်နိုင်သည် ။ ချက်ချင်း "၎င်း၏အထွတ်အထိပ်တွင်၊ ၎င်းသည် တိုတောင်းပြီး အစွမ်းထက်သော ပဲမျိုးစုံလိုအပ်သော ပစ္စည်းများကို စီမံဆောင်ရွက်ပေးရန်အတွက် စံပြကိုယ်စားလှယ်ဖြစ်လာစေသည်။
အလွန်ရှည်လျားသောအကွာအဝေးမဟုတ်သော relay မဟုတ်သော optical transmission သည် optical fiber ဆက်သွယ်ရေးနယ်ပယ်တွင် အမြဲတမ်းသုတေသနဟော့စပေါ့တစ်ခုဖြစ်သည်။ optical amplification နည်းပညာအသစ်ကို ရှာဖွေခြင်းသည် relay မဟုတ်သော optical transmission အကွာအဝေးကို ထပ်မံတိုးချဲ့ရန် အဓိက သိပ္ပံနည်းကျ ပြဿနာဖြစ်သည်။
Raman အမြတ်ကိုအခြေခံ၍ ကျပန်းဖြန့်ဝေထားသော တုံ့ပြန်ချက်ဖိုက်ဘာလေဆာ၊ ၎င်း၏အထွက်ရောင်စဉ်သည် မတူညီသောပတ်ဝန်းကျင်အခြေအနေများအောက်တွင် ကျယ်ပြန့်ပြီး တည်ငြိမ်ကြောင်း အတည်ပြုထားပြီး၊ ရှည်လျားသောရောင်စဉ်အနေအထားနှင့် တစ်ဝက်တစ်ပျက်အပေါက် DFB-RFL ၏ bandwidth သည် ပေါင်းထည့်ထားသောအချက်တုံ့ပြန်ချက်နှင့် အတူတူပင်ဖြစ်သည် ကိရိယာ Spectra သည် အလွန်ဆက်စပ်နေပါသည်။ ပွိုင့်ကြေးမုံ၏ ရောင်စဉ်တန်းလက္ခဏာများ (ဥပမာ FBG ကဲ့သို့) ပြင်ပပတ်ဝန်းကျင်နှင့် ပြောင်းလဲပါက ဖိုက်ဘာကျပန်းလေဆာ၏ ကြာရှည်ရောင်စဉ်ကိုလည်း ပြောင်းလဲပါမည်။ ဤနိယာမကိုအခြေခံ၍ အလွန်ရှည်လျားသောအကွာအဝေးပွိုင့်-အာရုံခံခြင်းဆိုင်ရာလုပ်ဆောင်ချက်များကို သိရှိရန်အတွက် ဖိုက်ဘာကျပန်းလေဆာများကို အသုံးပြုနိုင်သည်။
မူပိုင်ခွင့် @ 2020 Shenzhen Box Optronics Technology Technology Couponics Technology Couprones, Ltd. - China Fiber Optic Modules, Fiber Coupled Pasers ထုတ်လုပ်သူများ,